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Segmentation for
visual recognition

Applications:

- Pose estimation (body, hand)

- Semantic full scene labelling

Hard complexity constraints (real time!)
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(Deep) representation learning
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Segmentation and spatial relationships
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“Spatial learning”

Application:
- Calculate human pose : set of joint positions

- Use an intermediate representation : body
part segmentation
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Spatial relationships: labels

Additional information: neighboring pixels are likely
— to have similar labels, or
— to have labels which are adjacent in the object layout (!!)

Could also be solved by MRF + discrete optimization

7>
Zy

sl 17 E(l,....10 ZU(ZZ,Z +a Y D)

b (i,§)€E

LIRS @



Structured models ... w/o structure

- It is not possible to include pairwise terms into a
classifier which classifies pixels independently.

- Pairwise terms lead to combinatorial problems.

- Alternative strategy:
— do not proceed by pairs Zi
— change the loss function for pixelwise classification
— punish errors (classically), but:

— punish errors less, if the misclassified label is a neighbor | %

of the groundtruth label

- It will be shown that this strategy decreases “pure”
classical (1) classification error.
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Spatial deep learning

Mimages {X*!, ..., X"}

- A parametric function maps pixels i (and their receptive fields) to a
feature representation
P Zm € R@

Z = f(Xi"0y)

- A classifier predicts part labels
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Classical supervised learning

Stimulated network output: Target output (groundtruth):
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Classical loss function: cross entropy
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Learning to rank class labels
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Ranked network output ~ Target ranking

- The groundtruth class label is supposed to be ranked first (highest

classifier response)

- The neighboring class labels are supposed to ranked next
- The non-neighboring class labels are ranked last
- The rankings inside the groups (gt, nb, non-nb) are irrelevant
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Learning to rank class labels

Similar to (Burges, NIPS 2006), the loss function is decomposed into
terms over pairs. For each pair, differences in network output are

mapped to probabilities :
Owy — g(Zi,U) - g(Zi,v)

0
e
Puv —
1+ e%u

A target probability is defined according to desired ranking:
P, is setto A\>0.5 if uis ranked higher than v, and1—\ otherwise.

Output and target probability are compared with cross-entropy loss:

Cyw = —P,,log P, — (1 — Py)log(l — Pu)
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Input Groundtruth

CDCA4CV Poselets dataset
(Holt et al., 2011)

Results

Random forest ~ ConvNetw/  ConvNet w/
(Shotton et al., DrLIM spatial
CVPR 2011) pretraining pretraining +
(Hadsell/ spatial
Chopra/

Lecun, CVPR  Packprop

2006) (Our method)
+classical

backprop
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Experimental results: accuracy

Methods Accuracy
Randomized forest (Shotton et al., 2011) 60.30%
Spatial Randomized forest (Jiu et al., 2013) 61.05%
Single-scale (vanilla) ConvNet (LeCun et al., 1998)  47.17%
Multi-scale ConvNet (Farabet et al., 2012) 62.54%

Convolutional layers LR Fine-tuning Accuracy
DrLIM (Hadsell et al., 2006) classical no 35.10%
DrLIM (Hadsell et al., 2006)  spatial no 41.05%

spatial classical no 38.60%
spatial spatial no 41.65%
DrLIM (Hadsell et al., 2006) classical yes 64.39%
DrLIM (Hadsell et al., 2006)  spatial yes 65.12%
spatial classical yes 65.18%
spatial spatial yes 66.92%

CDCA4CV Poselets dataset
(Holt et al., 2011)
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Hand part segmentation

- Structured Deep learning
- Real time necessary

- Training set: 600.000 frames =
— labelled synthetic data ‘
— Unlabelled real data
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Structural information

- A single region is supposed to exist for each label
- Unconnected outlier pixels are identified and punished
- No regularization during testing: pixelwise classification

after one update

barycenter class 20

.
.
s barycenter class 4

after one update

‘ after one update
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Learning context

TRAINING PHASE 1
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Results

On 50 manually annotated frames (real data)

: Training Test
Loss function data data Accuracy Average per class
. . synth. 85.90% 78.50%
(Qsa (supervised baseline) | synth. renl AT 15% 24,089
Qsd + Qioc + leb all synth. 85.49% 78.31%
(semi-supervised, ours) real 50.50% 43.25%
Terms Qioc | Qo™ | Quin™ + Quiv™ | Quoc + Quuv™ + Qv | Qs
Requires labels no no no no yes
Gain in % points | +0.60 | +0.36 +0.41 +0.82 +16.05
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Results on
real images :
one step of

unsupervised
training
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Conclusion
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- Many applications need highly efficient (real time)
segmentation algorithms

- Traditional graphical models are unsuited

- Including structural terms into training (as opposed to
testing) can help
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