

Mingyuan Jiu Doct., soutenu le 3.4.2014

Natalia Neverova Doct. 2^{ième} année

Graham W. Taylor, Université de Guelph, Canada

Christian Wolf Université de Lyon, INSA-Lyon LIRIS UMR CNRS 5205

Segmentation for visual recognition

Applications:

- Pose estimation (body, hand)
- Semantic full scene labelling

Hard complexity constraints (real time!)

PhD of Mingyuan Jiu

PhD of Natalia Neverova

PhD of Prisca Bonnet

(Deep) representation learning

Segmentation and spatial relationships

"Spatial learning"

Application:

- Calculate human pose : set of joint positions
- Use an intermediate representation : body part segmentation

PhD of Mingyuan Jiu

Figure : Shotton et al., CVPR 2011

Jiu, Wolf, Baskurt, 2013

Spatial relationships: labels

Additional information: neighboring pixels are likely

- to have similar labels, or
- to have labels which are adjacent in the object layout (!!)

Could also be solved by MRF + discrete optimization

$$E(l_{1}, \dots, l_{N}) = \sum_{i} U(l_{i}, Z_{i}) + \alpha \sum_{(i,j) \in \mathcal{E}} D(l_{i}, l_{j})$$

Structured models ... w/o structure

- It is <u>not</u> possible to include pairwise terms into a classifier which classifies pixels independently.
- Pairwise terms lead to combinatorial problems.
- Alternative strategy:
 - do not proceed by pairs
 - change the loss function for pixelwise classification
 - punish errors (classically), but:
 - punish errors <u>less</u>, if the misclassified label is a <u>neighbor</u> of the groundtruth label
- It will be shown that this strategy decreases "pure" classical (!!) classification error.

Spatial deep learning

M images $\{X^1, \ldots, X^M\}$

- A parametric function maps pixels *i* (and their receptive fields) to a feature representation $Z_i^m \in \mathbb{R}^Q$

$$Z_i^m = f(X_i^m | \theta_f)$$

- A classifier predicts part labels

$$\hat{l_i} = g(Z_i^m | \theta_g)$$

Classical supervised learning

o \bar{l}_1 **o** \bar{l}_2 **o** \bar{l}_3

Stimulated network output:

Target output (groundtruth):

Classical loss function: cross entropy

$$E(w) = -\sum_{n} \left\{ \bar{l}_{n} \ln \hat{l}_{n} + (1 - \bar{l}_{n}) \ln(1 - \hat{l}_{n}) \right\}$$

Learning to rank class labels

- The groundtruth class label is supposed to be ranked first (highest classifier response)
- The neighboring class labels are supposed to ranked next
- The non-neighboring class labels are ranked last
- The rankings inside the groups (gt, nb, non-nb) are irrelevant

Learning to rank class labels

Similar to (Burges, NIPS 2006), the loss function is decomposed into terms over pairs. For each pair, differences in network output are mapped to probabilities :

$$o_{uv} = g(Z_{i,u}) - g(Z_{i,v})$$
$$P_{uv} = \frac{e^{o_{ij}}}{1 + e^{o_{ij}}}$$

A target probability is defined according to desired ranking: \bar{P}_{uv} is set to $\lambda > 0.5$ if *u* is ranked higher than *v*, and $1 - \lambda$ otherwise.

Output and target probability are compared with cross-entropy loss:

Results

Experimental results: accuracy

Methods	Accuracy
Randomized forest (Shotton et al., 2011)	60.30%
Spatial Randomized forest (Jiu et al., 2013)	61.05%
Single-scale (vanilla) ConvNet (LeCun et al., 1998)	47.17%
Multi-scale ConvNet (Farabet et al., 2012)	62.54%

Convolutional layers	LR	Fine-tuning	Accuracy
DrLIM (Hadsell et al., 2006)	classical	no	35.10%
DrLIM (Hadsell et al., 2006)	spatial	no	41.05%
spatial	classical	no	38.60%
spatial	spatial	no	$\mathbf{41.65\%}$
DrLIM (Hadsell et al., 2006)	classical	yes	64.39%
DrLIM (Hadsell et al., 2006)	spatial	yes	65.12%
spatial	classical	yes	65.18%
spatial	spatial	yes	66.92 %

CDC4CV Poselets dataset (Holt et al., 2011)

Hand part segmentation

- Structured Deep learning
- Real time necessary
- Training set: 600.000 frames
 - labelled synthetic data
 - Unlabelled real data

PhD of Natalia Neverova

Structural information

- A single region is supposed to exist for each label
- Unconnected outlier pixels are identified and punished
- No regularization during testing: pixelwise classification

LIRISON

Learning context

Results

On 50 manually annotated frames (real data)

Loss function	Training data	Test data	Accuracy	Average per class
Q_{sd} (supervised baseline)	synth.	synth. real	$85.90\%\ 47.15\%$	$\begin{array}{c c} 78.50\% \\ 34.98\% \end{array}$
$Q_{sd} + Q_{loc} + Q_{glb}$ (semi-supervised, ours)	all	synth. real	85.49% 50.50 %	78.31% 43 .25%

Terms	Q_{loc}	Q_{glb}^{+}	$Q_{glb}^{+} + Q_{glb}^{-}$	$Q_{loc} + Q_{glb}^{+} + Q_{glb}^{-}$	Q_{sd}
Requires labels	no	no	no	no	yes
Gain in % points	+0.60	+0.36	+0.41	+0.82	+16.05

Results on real images : one step of unsupervised training

Results on real images

Conclusion

- Many applications need highly efficient (real time) segmentation algorithms
- Traditional graphical models are unsuited
- Including structural terms into training (as opposed to testing) can help

