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(Deep) representation learning!

Feature 
mapping! Classifier!

avoiding the problem of generalization with hand-engineered features.

Farabet et al. (2012) have recently introduced multi-scale ConvNets and

applied them successfuly to Full Scene Labeling. Our work is similar in its

motivation and the fact that we adopt their multi-scale approach to learn

scale-invariant features. However, the way in which we approach the prob-

lem is very di↵erent. They apply sophisticated machinery based on optimal

purity cover to search the best spatial grouping of feature vectors from which

to predict a label. Our model has no such notion of adaptive pooling. In-

stead, we use weakly-supervised learning to introduce spatial context into the

features. We believe the two approaches are complimentary, and although

beyond the scope of this paper, could be applied together.

3. Integrating spatial constraints into deep learning

In this section, we propose a method which learns to segment an image into

parts which may be articulated. We pose this task as a typical classification

problem, where each pixel of the image is classified into one of a discrete

number of part labels L = {1 . . . L}. We aim to make decisions pixel-wise in

order to minimize computational complexity.

We are given a set of M images {X1, . . . , XM} and their associated la-

beled groundtruths. In our notation, the pixels of an image are indexed

with a linear index: Xm = {Xm

i

}. We seek to learn a segmentation model

consisting of two parts:

• A parametric mapping function Zm

i

= f(Xm

i

|✓
f

) which embeds each

pixel i and its receptive field to a feature representation Zm

i

2 RQ.

The parameters ✓
f

are learned from training data, taking into account
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Euclidean distances of pairs of features in the embedding space: dm
ij

=

||Zm

i

� Zm

j

||2 (see Section 3.1).

• A classifier l̂
i

= g(Zm

i

|✓
g

) which classifies the features Zm

i

given trained

parameters ✓
g

giving an estimate l̂
i

of the part label (see Section 3.2).

As is common in the Deep Learning literature, the embedding can be pre-

trained in an unsupervised (Hinton and Salakhutdinov, 2006) or supervised

(Salakhutdinov and Hinton, 2007) manner based on auto-encoding or some

other kind of inductive principle. Then, the classifier and the embedding

are jointly learned in a supervised way by minimizing some classification-

based loss1. Our method proceeds in a similar way. We assume that the

spatial part layout remains consistent across the di↵erent images of a cor-

pus. In particular, adjacency information of parts is assumed not to vary

across images. In body part estimation, for example, we suppose that the

upper arm and the forearm are always adjacent. The next two subsections

will describe how spatial constraints can be integrated into, respectively, the

training procedure for the embedding f(·), as well as the training procedure

for the classifier g(·). The two contributions can be applied independently, or

combined. The result is a method proceeding as illustrated in Figure 1c: the

information on the neighborhood layout is injected into a classifier working

independently for each pixel i.

1If pre-training is supervised, the common setting is to perform classification by k-

nearest neighbor search in embedded space, requiring no additional learning step.
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38 Chapitre 2. Caractéristiques visuelles pour la classification de séquences vidéo

Figure 2.14 – Architecture du réseau de neurones à convolutions LeNet-5 [LBBH98] :
Les cartes de caractéristiques sont représentés en gris et notés par des Ci, les cartes de
sous-échantillonnage sont représentés en bleu et notés par des Si, et les neurones sont
représentés par des ronds blancs et notés par des Ni. Figure extraite de [LBBH98].

Ni. Les couches Ci opèrent sur leurs entrées des convolutions 2D dont les noyaux sont

les poids à apprendre, et alimentent les couches suivantes comme pour un MLP clas-

sique. Les couches Si appliquent un moyennage spatial (généralement de facteur 2) sur

leur entrées, puis multiplient le résultat par un poids. La succession de ces deux types

de couches (la partie C1, S1, C2 et S2 sur la Figure 2.14) sert à extraire les informations

saillantes à partir de l’image d’entrée, et à les encoder dans un vecteur au niveau de N1.

Les 3 dernières couches sont un MLP classique (cf. chapitre précédent) qui sert quant à

lui à classer les données encodées. L’objectif est de construire automatiquement, à partir

de l’image brute en entrée, une représentation de plus en plus haut-niveau de couche

en couche. On parle alors d’apprentissage “profond” (deep learning - en anglais).

Le modèle est entraîné par une rétro-propagation avec momentum (cf. équation 2.18),

qui tient en compte des particularités architecturales des ConvNets par rapport aux MLPs

(partage de poids, cartes, ...). Nous présenterons plus en détail lors du chapitre 5 les

équations de la mise à jour des poids pour chacun de ces composants architecturaux

(afin d’introduire leur extension au cas 3D). Nous invitons néanmoins le lecteur intéressé

par une description détaillée de l’algorithme d’apprentissage des ConvNets 2D à se
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“Spatial learning”!
Application: !
-  Calculate human pose : set of joint positions!
-  Use an intermediate representation : body 

part segmentation!

Figure : Shotton et al., CVPR 2011!

Real-Time Human Pose Recognition in Parts from Single Depth Images
Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction
Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-
time depth cameras [16, 19, 44, 37, 28, 13]. However, even
the best existing systems still exhibit limitations. In partic-
ular, until the launch of Kinect [21], none ran at interactive
rates on consumer hardware while handling a full range of
human body shapes and sizes undergoing general body mo-
tions. Some systems achieve high speeds by tracking from
frame to frame but struggle to re-initialize quickly and so
are not robust. In this paper, we focus on pose recognition
in parts: detecting from a single depth image a small set of
3D position candidates for each skeletal joint. Our focus on
per-frame initialization and recovery is designed to comple-
ment any appropriate tracking algorithm [7, 39, 16, 42, 13]
that might further incorporate temporal and kinematic co-
herence. The algorithm presented here forms a core com-
ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-
nition work that divides objects into parts (e.g. [12, 43]),
our approach is driven by two key design goals: computa-
tional efficiency and robustness. A single input depth image
is segmented into a dense probabilistic body part labeling,
with the parts defined to be spatially localized near skeletal

depth image body parts 3D joint proposals 

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-
binatorial search over the different body joints, although
within a single part there are of course still dramatic dif-
ferences in the contextual appearance. For training data,
we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from
a large motion capture database. We train a deep ran-
domized decision forest classifier which avoids overfitting
by using hundreds of thousands of training images. Sim-
ple, discriminative depth comparison image features yield
3D translation invariance while maintaining high computa-
tional efficiency. For further speed, the classifier can be run
in parallel on each pixel on a GPU [34]. Finally, spatial
modes of the inferred per-pixel distributions are computed
using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in
under 5ms per frame (200 frames per second) on the Xbox
360 GPU, at least one order of magnitude faster than exist-
ing approaches. It works frame-by-frame across dramati-
cally differing body shapes and sizes, and the learned dis-
criminative approach naturally handles self-occlusions and

1
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Additional information: neighboring pixels are likely !
–  to have similar labels, or!
–  to have labels which are adjacent in the object layout (!!)!
!

Spatial relationships: labels!
Context Supervised Pre-training Experimental results Conclusions

Context

Object recognition, pose estimation, scene recognition usually
need part segmentation.
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Features are typically based on appearance (SIFT, HOG/HOF ...).
Features can also be informed by spatial relationships.
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Figure 1. Different ways to include spatial layout, or not, into learning parts labels li from features Zi for pixels i: (a) pixelwise independent
classification, layout is not taken into account; (b) A Markov random field with pairwise terms coding spatial constraints; (c) our method:
pixelwise independent classification including spatial constraints N .

method uses an energy function to enforce a spatial consis-
tency in learned features that reflects the spatial layout of
labels. It is based on two main assumptions. First, different
high-dimensional features with the the same label are em-
bedded to a lower-dimensional manifold which preserve the
original semantic meaning. Second, we believe that greater
loss should be incurred when misclassification occurs be-
tween features coming from non-neighbor labels than fea-
tures coming from same or neighboring labels. In other
words, the geometry of learned features, to some extent,
reflects the spatial layout of labels.

In this paper we propose a method which segments an
image or an object into parts through pixelwise classifica-
tion and which integrates the spatial layout of the part la-
bels. Like the methods ignoring the spatial layout, it is
extremely fast as no additional step needs to be added to
pixelwise classification and no energy minimization is nec-
essary. The (slight) additional computational load only con-
cerns learning at an offline stage. The goal is not to compete
with methods based on energy minimization, which is im-
possible through pixelwise classification only. Instead, we
aim to improve the performance of pixelwise classification
by using all of the available information during learning.

Classical learning machines that work on data embed-
ded in a vector space, like neural networks, SVMs, random-
ized decision trees, boosted classifiers, etc., are, in princi-
ple, capable of learning arbitrary complex decision func-
tions if the underyling prediction model (architecture) is
complex enough. In reality, the available amount of train-
ing data and computational complexity limit the complex-
ity which can be learned. In most cases only few data are
available with respect to the complexity of the problem. It
is therefore often useful to impose some structure on the
model. We already mentioned structured models based on
energy minization and their computational disadvantages.
Manifold learning is another technique which assumes that
the data, although embedded in a high dimensional space,
is distributed according to lower dimensional manifold in

that space. Semi-supervised learning uses a large amount
of additional training data, which is unlabeled, to help the
learning machine to better infer the structure of the decision
function. In this work we propose to use prior knowledge in
the form of the spatial layout of the labels to add structure
to the decision function learned by the learning machine.

To date, the dominant methodology for visual recogni-
tion is the extraction of a visual representation (features)
followed by a machine learning algorithm. Due to the
high dimensionality and complexity of image datasets, how
to extract the best features from a visual scene is still an
open problem. In the last decade, feature descriptors em-
ployed by the computer vision community have been mostly
hand-crafted and specific to particular visual tasks, for in-
stance, the scale-invariant feature transform (SIFT) initially
used for image matching, and the histogram of gradient
(HoG) descriptor initially proposed for pedestrian detec-
tion. Although these feature descriptors and their variants
have achieved state-of-the-art performance on many tasks,
their design mostly relies on human intelligence. Recently,
feature learning has gained more and more attention, spe-
cially following the introduction of Deep Belief Networks
[13]. Compared to hand-crafted features, feature learning
requires less hand-crafting and human expertise but more
sophisticated learning architectures. It may also exploit
the much larger amount of unlabeled data typically avail-
able. The proposed in this paper builds a weakly supervised
feature learning framework, in which label information is
used to construct a non-linear feature extractor, rather than
a prediction machine. Our objective is to learn features in-
formed by the spatial layout of part labels, making our fea-
tures more expressive and discriminative than other Deep
Learning-based approaches.

This paper has proposes several contributions:

• We propose a framework which integrates spatial part
layout into learning architectures, in particular, convo-
lutional networks. The spatial constraints will be in-
troduced at two different levels: ConvNet pre-training
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(a) (b) (c) (d) (e)
Figure 3. Classification examples: the first two rows are from the CDC4CV dataset, the last row is from the CORE dataset. (a) input
depth image; (b) groundtruth segmentation; (c) appropriate baseline: randomized forest for CDC4CV; multilayer ConvNet for CORE; (d)
DrLIM+MLP without spatial learning; (e) our method (spatial pre-training and spatial MLP learning).
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depth image; (b) groundtruth segmentation; (c) appropriate baseline: randomized forest for CDC4CV; multilayer ConvNet for CORE; (d)
DrLIM+MLP without spatial learning; (e) our method (spatial pre-training and spatial MLP learning).
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Structured models ... w/o structure!
-  It is not possible to include pairwise terms into a 

classifier which classifies pixels independently. !
-  Pairwise terms lead to combinatorial problems.!
-  Alternative strategy:!

–  do not proceed by pairs!
–  change the loss function for pixelwise classification!
–  punish errors (classically), but:!
–  punish errors less, if the misclassified label is a neighbor 

of the groundtruth label!
-  It will be shown that this strategy decreases “pure” 

classical (!!) classification error. !
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Figure 1. Different ways to include spatial layout, or not, into learning parts labels li from features Zi for pixels i: (a) pixelwise independent
classification, layout is not taken into account; (b) A Markov random field with pairwise terms coding spatial constraints; (c) our method:
pixelwise independent classification including spatial constraints N .

method uses an energy function to enforce a spatial consis-
tency in learned features that reflects the spatial layout of
labels. It is based on two main assumptions. First, different
high-dimensional features with the the same label are em-
bedded to a lower-dimensional manifold which preserve the
original semantic meaning. Second, we believe that greater
loss should be incurred when misclassification occurs be-
tween features coming from non-neighbor labels than fea-
tures coming from same or neighboring labels. In other
words, the geometry of learned features, to some extent,
reflects the spatial layout of labels.

In this paper we propose a method which segments an
image or an object into parts through pixelwise classifica-
tion and which integrates the spatial layout of the part la-
bels. Like the methods ignoring the spatial layout, it is
extremely fast as no additional step needs to be added to
pixelwise classification and no energy minimization is nec-
essary. The (slight) additional computational load only con-
cerns learning at an offline stage. The goal is not to compete
with methods based on energy minimization, which is im-
possible through pixelwise classification only. Instead, we
aim to improve the performance of pixelwise classification
by using all of the available information during learning.

Classical learning machines that work on data embed-
ded in a vector space, like neural networks, SVMs, random-
ized decision trees, boosted classifiers, etc., are, in princi-
ple, capable of learning arbitrary complex decision func-
tions if the underyling prediction model (architecture) is
complex enough. In reality, the available amount of train-
ing data and computational complexity limit the complex-
ity which can be learned. In most cases only few data are
available with respect to the complexity of the problem. It
is therefore often useful to impose some structure on the
model. We already mentioned structured models based on
energy minization and their computational disadvantages.
Manifold learning is another technique which assumes that
the data, although embedded in a high dimensional space,
is distributed according to lower dimensional manifold in

that space. Semi-supervised learning uses a large amount
of additional training data, which is unlabeled, to help the
learning machine to better infer the structure of the decision
function. In this work we propose to use prior knowledge in
the form of the spatial layout of the labels to add structure
to the decision function learned by the learning machine.

To date, the dominant methodology for visual recogni-
tion is the extraction of a visual representation (features)
followed by a machine learning algorithm. Due to the
high dimensionality and complexity of image datasets, how
to extract the best features from a visual scene is still an
open problem. In the last decade, feature descriptors em-
ployed by the computer vision community have been mostly
hand-crafted and specific to particular visual tasks, for in-
stance, the scale-invariant feature transform (SIFT) initially
used for image matching, and the histogram of gradient
(HoG) descriptor initially proposed for pedestrian detec-
tion. Although these feature descriptors and their variants
have achieved state-of-the-art performance on many tasks,
their design mostly relies on human intelligence. Recently,
feature learning has gained more and more attention, spe-
cially following the introduction of Deep Belief Networks
[13]. Compared to hand-crafted features, feature learning
requires less hand-crafting and human expertise but more
sophisticated learning architectures. It may also exploit
the much larger amount of unlabeled data typically avail-
able. The proposed in this paper builds a weakly supervised
feature learning framework, in which label information is
used to construct a non-linear feature extractor, rather than
a prediction machine. Our objective is to learn features in-
formed by the spatial layout of part labels, making our fea-
tures more expressive and discriminative than other Deep
Learning-based approaches.

This paper has proposes several contributions:

• We propose a framework which integrates spatial part
layout into learning architectures, in particular, convo-
lutional networks. The spatial constraints will be in-
troduced at two different levels: ConvNet pre-training

2



Spatial deep learning!

avoiding the problem of generalization with hand-engineered features.

Farabet et al. (2012) have recently introduced multi-scale ConvNets and

applied them successfuly to Full Scene Labeling. Our work is similar in its

motivation and the fact that we adopt their multi-scale approach to learn

scale-invariant features. However, the way in which we approach the prob-

lem is very di↵erent. They apply sophisticated machinery based on optimal

purity cover to search the best spatial grouping of feature vectors from which

to predict a label. Our model has no such notion of adaptive pooling. In-

stead, we use weakly-supervised learning to introduce spatial context into the

features. We believe the two approaches are complimentary, and although

beyond the scope of this paper, could be applied together.

3. Integrating spatial constraints into deep learning

In this section, we propose a method which learns to segment an image into

parts which may be articulated. We pose this task as a typical classification

problem, where each pixel of the image is classified into one of a discrete

number of part labels L = {1 . . . L}. We aim to make decisions pixel-wise in

order to minimize computational complexity.

We are given a set of M images {X1, . . . , XM} and their associated la-

beled groundtruths. In our notation, the pixels of an image are indexed

with a linear index: Xm = {Xm

i

}. We seek to learn a segmentation model

consisting of two parts:

• A parametric mapping function Zm

i

= f(Xm

i

|✓
f

) which embeds each

pixel i and its receptive field to a feature representation Zm

i

2 RQ.

The parameters ✓
f

are learned from training data, taking into account
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||2 (see Section 3.1).

• A classifier l̂
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= g(Zm

i
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g

) which classifies the features Zm

i

given trained

parameters ✓
g

giving an estimate l̂
i

of the part label (see Section 3.2).

As is common in the Deep Learning literature, the embedding can be pre-

trained in an unsupervised (Hinton and Salakhutdinov, 2006) or supervised

(Salakhutdinov and Hinton, 2007) manner based on auto-encoding or some

other kind of inductive principle. Then, the classifier and the embedding

are jointly learned in a supervised way by minimizing some classification-

based loss1. Our method proceeds in a similar way. We assume that the

spatial part layout remains consistent across the di↵erent images of a cor-

pus. In particular, adjacency information of parts is assumed not to vary

across images. In body part estimation, for example, we suppose that the

upper arm and the forearm are always adjacent. The next two subsections

will describe how spatial constraints can be integrated into, respectively, the

training procedure for the embedding f(·), as well as the training procedure

for the classifier g(·). The two contributions can be applied independently, or

combined. The result is a method proceeding as illustrated in Figure 1c: the

information on the neighborhood layout is injected into a classifier working

independently for each pixel i.

1If pre-training is supervised, the common setting is to perform classification by k-

nearest neighbor search in embedded space, requiring no additional learning step.
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M images !
-  A parametric function maps pixels i (and their receptive fields) to a 

feature representation !
!
!

-  A classifier predicts part labels!
!
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Classical supervised learning!

Classical loss function: cross entropy!

backpropagation algorithm and cluster reassignment algo-

rithm specific to the BoW model. In Sect. ‘‘Experimental
Results,’’ we evaluate the proposed approach on the public

KTH human action data set [11]. Section ‘‘Conclusion’’

gives a conclusion.

The Neural Model

In our application, space-time interest points are calculated
on each video, and discriminant and invariant features are

calculated on a space-time cuboid around each interest

point location. Initially, a video is therefore described as a
collection of feature vectors. In traditional ways to translate

this description into a BoW model, codebook creation and

learning of the BoW models of the training set are treated
as two different phases addressed with two different

methods. Here, we present a novel formulation as a single

artificial NN.
In classical NNs, each entity is classified separately by

the learned NN after a stimulation phase. In our proposed

model, for each video, multiple feature vectors (one per
interest point) are presented sequentially while the NN

integrates this information internally. Classification is done

after all feature vectors have been presented. The scheme
in Fig. 1 illustrates this concept. We first give an overview

of its purpose before explaining each layer in detail.

The NN consists of two parts: an initial part at the left
that processes feature vectors and projects them to a

codebook. The cluster centers of this codebook are stored

as ‘‘weights’’ of this part of the NN. While passing through
the left part of the network, the feature vector is translated

into a binary vector indicating which cluster center it

activates. When several feature vectors are presented, this
information is integrated into a BoW model. The second

part of the NN is a classical MLP that takes a decision on

the action class for each BoW model.

The Layers of the Proposed NN Model

The input layer consists of a set a of M input nodes a ¼
½a1; . . .; aM#T corresponding to the feature values assigned

to a single local primitive, that is, an interest point.

The N nodes of the second layer b ¼ ½b1; . . .; bN #T cor-
respond to the distances of the input feature vectors to each

of N cluster centers. To each node i and each distance bi is
thus assigned a cluster center wi

cc, that is, a vector of

dimension M, which is involved in the distance

computation:

bi ¼ jja$ wcc
i jj ð1Þ

The N nodes of the third layer compute an indicator of

the nearest cluster center. The nearest corresponding node
will be assigned 1, the other nodes 0. The minimum

distance will result in the largest value. This is

approximated through a softmin function, similar to the
classical softmax:

ci ¼ gbðbiÞ ¼
exp ð$bi=TÞP
j exp ð$bj=TÞ

ð2Þ

where T is a parameter controlling the stability of the

softmin function.

The network layers described above propagate the
stimulation of a single feature vector corresponding to a

single local primitive. As mentioned before, in our stimu-

lation strategy, multiple feature vectors of the same entity
(a video in our case) are presented iteratively, resulting in

different values for different feature vector p, which we

will denote as ci
p. The nodes of the next layer integrate the

responses for a single video over all P points:

di ¼
XP

p¼1

cp
i ð3Þ

The next two layers, e and f, are a classical MLP with

weights we and wf and activation function g(x):

Fig. 1 A scheme of the
different layers of the neural
network. The left part is
stimulated per interest point.
The right part is a classical
MLP taking decisions for each
video
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spatial part layout remains consistent across the di↵erent images of a cor-

pus. In particular, adjacency information of parts is assumed not to vary

across images. In body part estimation, for example, we suppose that the

upper arm and the forearm are always adjacent. The next two subsections

will describe how spatial constraints can be integrated into, respectively, the

training procedure for the embedding f(·), as well as the training procedure

for the classifier g(·). The two contributions can be applied independently, or

combined. The result is a method proceeding as illustrated in Figure 1c: the

information on the neighborhood layout is injected into a classifier working

independently for each pixel i.

1If pre-training is supervised, the common setting is to perform classification by k-

nearest neighbor search in embedded space, requiring no additional learning step.
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Stimulated network output:!

backpropagation algorithm and cluster reassignment algo-

rithm specific to the BoW model. In Sect. ‘‘Experimental
Results,’’ we evaluate the proposed approach on the public

KTH human action data set [11]. Section ‘‘Conclusion’’

gives a conclusion.

The Neural Model

In our application, space-time interest points are calculated
on each video, and discriminant and invariant features are

calculated on a space-time cuboid around each interest

point location. Initially, a video is therefore described as a
collection of feature vectors. In traditional ways to translate

this description into a BoW model, codebook creation and

learning of the BoW models of the training set are treated
as two different phases addressed with two different

methods. Here, we present a novel formulation as a single

artificial NN.
In classical NNs, each entity is classified separately by

the learned NN after a stimulation phase. In our proposed

model, for each video, multiple feature vectors (one per
interest point) are presented sequentially while the NN

integrates this information internally. Classification is done

after all feature vectors have been presented. The scheme
in Fig. 1 illustrates this concept. We first give an overview

of its purpose before explaining each layer in detail.

The NN consists of two parts: an initial part at the left
that processes feature vectors and projects them to a

codebook. The cluster centers of this codebook are stored

as ‘‘weights’’ of this part of the NN. While passing through
the left part of the network, the feature vector is translated

into a binary vector indicating which cluster center it

activates. When several feature vectors are presented, this
information is integrated into a BoW model. The second

part of the NN is a classical MLP that takes a decision on

the action class for each BoW model.

The Layers of the Proposed NN Model

The input layer consists of a set a of M input nodes a ¼
½a1; . . .; aM#T corresponding to the feature values assigned

to a single local primitive, that is, an interest point.

The N nodes of the second layer b ¼ ½b1; . . .; bN #T cor-
respond to the distances of the input feature vectors to each

of N cluster centers. To each node i and each distance bi is
thus assigned a cluster center wi

cc, that is, a vector of

dimension M, which is involved in the distance

computation:

bi ¼ jja$ wcc
i jj ð1Þ

The N nodes of the third layer compute an indicator of

the nearest cluster center. The nearest corresponding node
will be assigned 1, the other nodes 0. The minimum

distance will result in the largest value. This is

approximated through a softmin function, similar to the
classical softmax:

ci ¼ gbðbiÞ ¼
exp ð$bi=TÞP
j exp ð$bj=TÞ

ð2Þ

where T is a parameter controlling the stability of the

softmin function.

The network layers described above propagate the
stimulation of a single feature vector corresponding to a

single local primitive. As mentioned before, in our stimu-

lation strategy, multiple feature vectors of the same entity
(a video in our case) are presented iteratively, resulting in

different values for different feature vector p, which we

will denote as ci
p. The nodes of the next layer integrate the

responses for a single video over all P points:

di ¼
XP

p¼1

cp
i ð3Þ

The next two layers, e and f, are a classical MLP with

weights we and wf and activation function g(x):

Fig. 1 A scheme of the
different layers of the neural
network. The left part is
stimulated per interest point.
The right part is a classical
MLP taking decisions for each
video

Cogn Comput
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Learning to rank class labels!
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Figure 2: The proposed loss function based on di↵erences in ranking.

3.3). In this section we show that a similar principle can also be applied to

supervised learning of classifiers. In our work, we choose a ConvNet with

a single fully-connected classification layer (i.e. the top layer is equivalent

to logistic regression) which are trained end-to-end. The same principle,

introducing spatial relationships into pixelwise classification, can also be ap-

plied to other classifiers, although the method may di↵er if the classifier is

not learned to minimize classification error (or something akin to it, such

as cross-entropy). In particular, in preliminary work we proposed a method

to include spatial constraints into learning random forests by adapting the

training algorithm based on maximizing gain in entropy (Jiu et al., 2013).

Classification-based neural nets are typically trained to minimize cross-

entropy. When the normalized outputs of the net are viewed as probabilities,

this is equivalent to maximizing the log probability the net assigns to the true

class. In the multi-class setting, this involves normalizing the outputs of the

network via a softmax function and comparing them to the groundtruth label.

However, minimizing cross-entropy does not take into account the layout of

the part labels.
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-  The groundtruth class label is supposed to be ranked first (highest 
classifier response)!

-  The neighboring class labels are supposed to ranked next!
-  The non-neighboring class labels are ranked last!
-  The rankings inside the groups (gt, nb, non-nb) are irrelevant!

Context Supervised Pre-training Experimental results Conclusions

Context

Object recognition, pose estimation, scene recognition usually
need part segmentation.
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Features are typically based on appearance (SIFT, HOG/HOF ...).
Features can also be informed by spatial relationships.

M.Jiu spatial learning 5 / 29



Learning to rank class labels!

We propose the following new loss function, which is based on the ranking

of class labels according to network output. For each input vector, a forward

pass gives a network response for each class label, which can be used to

rank the class labels in decreasing order. A loss can be defined based on the

di↵erence between this ranking and a desired target ranking, which is defined

by the following properties:

• The highest ranked class label should be the target groundtruth la-

bel. This constraint is related to the entropy loss in traditional neural

network learning;

• The next highest-ranked class labels should be neighbors of the groundtruth

label in the class neighborhood definition of the corpus. We advocate

that better generalization to unseen data can be achieved by forcing

the net to learn these constraints.

An example for this is given in Figure 2, where the groundtruth label for the

pixel is 1. The actual output ranks the groundtruth label at second place.

The target ranking ranks groundtruth label 1 at first place, followed by labels

3 and 2 which, in this example, are neighbors of label 1.

Learning to rank is a classical problem in machine learning which has been

addressed in the literature (Burges et al., 2005; Freund et al., 2003; Dekel

et al., 2004). We adopt a loss function similar in spirit to RankNet (Burges

et al., 2005), defined on pairwise constraints. Given a pair of labels (u, v),

we denote by g(Z
i,u

) and g(Z
i,v

) the respective topmost (i.e. classification)

layer outputs for pixel i, and by o
uv

= g(Z
i,u

)� g(Z
i,v

) their di↵erence — we

have dropped the index m to simplify the notation. The probability of label

13

u being ranked higher than v is mapped through a logistic function:

P
uv

=
eoij

1 + eoij
(5)

Given a target probability P̄
uv

, the loss function C
uv

is the cross entropy loss

(Burges et al., 2005):

C
uv

= �P̄
uv

logP
uv

� (1� P̄
uv

) log(1� P
uv

) (6)

The target probability P̄
uv

is set to �>0.5 if class u is ranked higher in the

desired ranking, and to 1�� otherwise.

Given the properties of the desired ranking described above, the following

two set of pairwise constraints has been derived:

1. A set of L � 1 constraints, where each constraint specifies that the

groundtruth label is to be ranked higher than one of the other labels;

2. A set of constraints each one specifying that a label u, which is a neigh-

bor of the groundtruth label, should be ranked higher than another

label v, which is not a neighbor of the groundtruth label.

The loss function for a single pixel is the sum over the pairwise constraints

of the pairwise loss C
uv

.

This loss function based on rankings provides a principled way of com-

bining classification loss and spatial layout. The weights between these two

types of constraints can be set through the � parameter controlling the target

probability P̄
uv

. Varying this parameter, di↵erent priorities could be given

to di↵erent constraints.

It is important to note that this formulation allows one to include unla-

beled data into the learning procedure in a semi-supervised setting. In this
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Similar to (Burges, NIPS 2006), the loss function is decomposed into 
terms over pairs. For each pair, differences in network output are 
mapped to probabilities :!

A target probability is defined according to desired ranking:!
      is set to            if u is ranked higher than v, and        otherwise.!
!
Output and target probability are compared with cross-entropy loss:!
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Figure 2: The proposed loss function based on di↵erences in ranking.

3.3). In this section we show that a similar principle can also be applied to

supervised learning of classifiers. In our work, we choose a ConvNet with

a single fully-connected classification layer (i.e. the top layer is equivalent

to logistic regression) which are trained end-to-end. The same principle,

introducing spatial relationships into pixelwise classification, can also be ap-

plied to other classifiers, although the method may di↵er if the classifier is

not learned to minimize classification error (or something akin to it, such

as cross-entropy). In particular, in preliminary work we proposed a method

to include spatial constraints into learning random forests by adapting the

training algorithm based on maximizing gain in entropy (Jiu et al., 2013).

Classification-based neural nets are typically trained to minimize cross-

entropy. When the normalized outputs of the net are viewed as probabilities,

this is equivalent to maximizing the log probability the net assigns to the true

class. In the multi-class setting, this involves normalizing the outputs of the

network via a softmax function and comparing them to the groundtruth label.

However, minimizing cross-entropy does not take into account the layout of

the part labels.
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Results!

(a) (b) (c) (d) (e)

Figure 4: Classification examples from the CDC4CV dataset. (a) input depth image; (b)

groundtruth segmentation; (c) appropriate baseline: randomized forest for CDC4CV; (d)

DrLIM+LR without spatial learning; (e) our method (spatial pre-training and spatial LR

learning).
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Input! Groundtruth! Random forest 
(Shotton et al., 
CVPR 2011)!

ConvNet w/ 
DrLIM 

pretraining !
(Hadsell/
Chopra/

Lecun, CVPR 
2006) 

+classical 
backprop!

ConvNet w/ 
spatial 

pretraining + 
spatial 

backprop!
(Our method)!

CDC4CV Poselets dataset!
(Holt et al., 2011)!



Experimental results: accuracy!
Methods Accuracy

Randomized forest (Shotton et al., 2011) 60.30%

Spatial Randomized forest (Jiu et al., 2013) 61.05%

Single-scale (vanilla) ConvNet (LeCun et al., 1998) 47.17%

Multi-scale ConvNet (Farabet et al., 2012) 62.54%

Table 1: Evaluation of di↵erent baselines on the CDC4CV dataset.

Convolutional layers LR Fine-tuning Accuracy

DrLIM (Hadsell et al., 2006) classical no 35.10%

DrLIM (Hadsell et al., 2006) spatial no 41.05%

spatial classical no 38.60%

spatial spatial no 41.65%

DrLIM (Hadsell et al., 2006) classical yes 64.39%

DrLIM (Hadsell et al., 2006) spatial yes 65.12%

spatial classical yes 65.18%

spatial spatial yes 66.92%

Table 2: Results of di↵erent combinations of classical and spatial learning on the CDC4CV

dataset. Fine-tuning means end-to-end training of the LR (top two layers) and ConvNet

(remaining layers) with the same objective used to train the LR.

spatial baseline, we also implemented DrLIM (Hadsell et al., 2006), a similar

pre-training strategy in which spatial layout is not taken into consideration.

The results are shown in Table 2. For each setting (fine-tuning or no fine-

tuning), spatial training outperforms non spatial training, and in many cases,

the gains are high.

Examples of segmentation results are shown in Figure 4. From visual in-

spection we can see that the segmentation results produced by spatial learn-
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Hand part segmentation!
-  Structured Deep learning !
-  Real time necessary!
-  Training set: 600.000 frames!

–  labelled synthetic data !
–  Unlabelled real data ! PhD of Natalia 

Neverova	  



Structural information!
-  A single region is supposed to exist for each label!
-  Unconnected outlier pixels are identified and punished!
-  No regularization during testing: pixelwise classification!



Learning context !
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Hand segmentation with structured convolutional learning 635 5

BACKPROPAGATION

FORWARD PASS
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BACKPROPAGATION

FORWARD PASS

DIRECT LEARNER

INPUT DEPTH MAP SEGMENTATION MAP 1
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SEGMENTATION MAP 2
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d
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Fig. 2. The two learning pathways involving a direct learner f
d

and a context learner
f
d

. The context learner operates on punctured neighborhood maps n(i,j), where the
(to be predicted) middle pixel is missing.

focus mainly on developing an e↵ective training procedure to learn meaningful
data representations that are robust to noise typical of real-world data.

The training data consists of input depth maps: X = {X(i)}, i = 1 . . . |X|.
From this whole set of maps, L maps are synthetic and annotated, denoted as
X

L

= {X(i)}, where i = 1 . . . L, L<|X|. The subset of unlabeled real images is
denoted as X

U

= {X(i)}, where i > L. The set of ground truth segmentation
maps corresponding to the labelled set is denoted as G = {G(i)}, where i =
1 . . . L, L|X|. No ground truth is available for X(i), i>L. Pixels in the di↵erent
maps are indexed using a linear index j: X(i,j) denotes the j

th pixel of the i

th

depth map.
The synthetic frames are rendered using a deformable 3D hand model. A

large variety of viewpoints and hand poses (typical for interactive interfaces) is
obtained under manually defined physical and physiological constraints. For the
sake of generalization, and also keeping in mind that manually labeling data is
tedious and impractical, we do not assume that ground-truth segmentation of
real data is available in any amount. Instead, in parallel with supervised learning
on annotated synthetic images, we use unlabeled frames for global optimization
during training time.

Optimization criteria are based on, first, consistency of each predicted pixel
class with its local neighborhood on the output segmentation map and, second,
global compactness and homogeneity of the predicted hand segments.

For the first task, at training time we introduce an additional classification
path, called the context learner, which is trained to predict each pixel’s class given
labels of its local neighborhood. Both the direct and context learners are first
pre-trained simultaneously in a purely supervised way on the synthetic images
(see Fig. 2). The pre-training of the context learner is divided into two steps.
First, ground truth label maps are used as the training input. After convergence
of the direct learner, its output is used instead for input to the context learner,



Results!
On 50 manually annotated frames (real data)!
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Table 1. Performance of networks trained with di↵erent objective functions.

Loss function
Training
data

Test
data

Accuracy Average per class

Q
sd

(supervised baseline) synth.
synth. 85.90% 78.50%
real 47.15% 34.98%

Q
sd

+Q
loc

+Q
glb all

synth. 85.49% 78.31%
(semi-supervised, ours) real 50.50% 43.25%

Table 2. Improvement in performance on a given real-world image after updating net-
work parameters using di↵erent supervised and unsupervised terms of the loss function
(estimated as an average over 50 labelled real-world test images).

Terms Q
loc

Q
glb

+ Q
glb

+ +Q
glb

� Q
loc

+Q
glb

+ +Q
glb

� Q
sd

Requires labels no no no no yes

Gain in % points +0.60 +0.36 +0.41 +0.82 +16.05

labeled real world samples. A single training image consisting of 80⇥ 80 = 6400
pixel samples is used for each step of gradient descent.

Comparative performance of classifiers trained by including and excluding
di↵erent unsupervised terms of the loss function is summarized in Table 1. Ex-
ploiting unlabeled real data for unsupervised training and network regularization
has proven to be generally beneficial, especially for reconstruction of small seg-
ments (such as finger parts), which leads to a significant increase of average
per-class accuracy. The bar plot on the Fig. 5 demonstrates significant improve-
ment of recognition rates for almost all classes except for the first, base ”palm”
class which can be seen as a background for a hand image against which finger
segments are usually detected. Therefore, this reflects the fact that more con-
fident detection in the case of semi-supervised training comes together with a
certain increase in the amount of false positives.

Table 2 illustrates the impact of one update of the network parameters for
di↵erent loss functions on the performance on a given image which was used
for computing the gradients. We note that a combination of two competitive
unsupervised terms (local and global) produces a more balanced solution than
the same terms separately.

The local term alone forces the network to favor the most statistically prob-
able class (i.e. the “palm” in our settings), while the global one on its own tends
to shift boundaries between regions producing segmentation maps similar to a
Voronoi diagram. In the latter case, the number of cells is typically defined by
an initial guess of the network on the given image and is unlikely to be changed
by global unsupervised learning alone.

Therefore we stress the importance of pre-training the direct and context
learners on the synthetic data in order to be capable of producing structurally
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Table 1. Performance of networks trained with di↵erent objective functions.

Loss function
Training
data

Test
data

Accuracy Average per class

Q
sd

(supervised baseline) synth.
synth. 85.90% 78.50%
real 47.15% 34.98%

Q
sd

+Q
loc

+Q
glb all

synth. 85.49% 78.31%
(semi-supervised, ours) real 50.50% 43.25%

Table 2. Improvement in performance on a given real-world image after updating net-
work parameters using di↵erent supervised and unsupervised terms of the loss function
(estimated as an average over 50 labelled real-world test images).

Terms Q
loc

Q
glb

+ Q
glb

+ +Q
glb

� Q
loc

+Q
glb

+ +Q
glb

� Q
sd

Requires labels no no no no yes

Gain in % points +0.60 +0.36 +0.41 +0.82 +16.05

labeled real world samples. A single training image consisting of 80⇥ 80 = 6400
pixel samples is used for each step of gradient descent.

Comparative performance of classifiers trained by including and excluding
di↵erent unsupervised terms of the loss function is summarized in Table 1. Ex-
ploiting unlabeled real data for unsupervised training and network regularization
has proven to be generally beneficial, especially for reconstruction of small seg-
ments (such as finger parts), which leads to a significant increase of average
per-class accuracy. The bar plot on the Fig. 5 demonstrates significant improve-
ment of recognition rates for almost all classes except for the first, base ”palm”
class which can be seen as a background for a hand image against which finger
segments are usually detected. Therefore, this reflects the fact that more con-
fident detection in the case of semi-supervised training comes together with a
certain increase in the amount of false positives.

Table 2 illustrates the impact of one update of the network parameters for
di↵erent loss functions on the performance on a given image which was used
for computing the gradients. We note that a combination of two competitive
unsupervised terms (local and global) produces a more balanced solution than
the same terms separately.

The local term alone forces the network to favor the most statistically prob-
able class (i.e. the “palm” in our settings), while the global one on its own tends
to shift boundaries between regions producing segmentation maps similar to a
Voronoi diagram. In the latter case, the number of cells is typically defined by
an initial guess of the network on the given image and is unlikely to be changed
by global unsupervised learning alone.

Therefore we stress the importance of pre-training the direct and context
learners on the synthetic data in order to be capable of producing structurally
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6 Experiments

We have created a synthetic dataset of scrolling-like gestures: 600k frames = 20k
gestures = 4k unique gestures captured from 5 di↵erent view points.

Fig. 3. Segmentation of Kinect images

7 Conclusion

Christian: 1) cite Mingyuan on combination of deep learning with structured
terms 2) Include Lima if we get the funding. 3) cite Taygun if we decide to use
the term ”context learner”
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-  Many applications need highly efficient (real time) 
segmentation algorithms!

-  Traditional graphical models are unsuited!
-  Including structural terms into training (as opposed to 

testing) can help!


