

Journée industrielle du LabEx PRIMES

SINGLE-PIXEL CAMERA

Florian ROUSSET^{1,2}, Nicolas DUCROS¹, Cosimo D'ANDREA², Françoise Peyrin¹

> ¹CREATIS – Université de Lyon ²Dipartimento di Fisica – Politecnico di Milano

> > September 13th, 2017

OPTICAL SETUP

- Spatial light modulator: spatial filtering of the image
- Measurements: projections of the image on the SLM patterns

FIORAL ROUSSEL	F	loria	n R	ou	ss	ΕT
----------------	---	-------	-----	----	----	----

CONCEPT

Florian ROUSSET

Single-pixel camera	Possible applications 00	Conclusic O
CONCEPT		
	P ₁ . Pattern design	

- P₂. Image restoration
- Problem *P*₁: how to choose the SLM patterns?
- Problem P₂: how to restore the image from the measurements?

Compressive sensing paradigm^{1,2}

- P₁. Few random patterns (i.e., measures) ©
- P₂. Slow ℓ_1 -minimization \odot

Example of a random pattern

¹ Donoho, IEEE Transactions on Information Theory, 52, 2006 ² Duarte et al., IEEE Signal Processing Magazine, 25, 2008

Compressive sensing paradigm^{1,2}

- P₁. Few random patterns (i.e., measures) ©
- P₂. Slow ℓ₁-minimization ☺

Adaptive basis scan in the wavelet domain^{3,4}

- P1. Few wavelet patterns ©
- P2. Fast inverse wavelet transform ©

Example of a random pattern

Example of a wavelet pattern

¹ Donoho, IEEE Transactions on Information Theory, 52, 2006

²Duarte et al., IEEE Signal Processing Magazine, 25, 2008

³Dai et al., Applied Optics, 53, 2014

⁴Rousset et al., IEEE Transactions on Computational Imaging, 3, 2017

Experimental limitations in single-pixel imaging

- Impossible implementation of patterns with negative elements
- Biased measurement due to dark current at the detector

Experimental limitations in single-pixel imaging

- Impossible implementation of patterns with negative elements
- Biased measurement due to dark current at the detector
- \rightarrow Pattern generalization technique^{5,6}

⁵Rousset et al., FR Patent 1751515, filed the 02.24.17

⁶Rousset et al., IEEE Transactions on Computational Imaging, submitted

ULTRAVIOLET AND INFRARED IMAGING

Single-pixel detectors vs array of sensors (CCD/CMOS)

- Better efficiency
- Low cost outside the visible domain

ULTRAVIOLET AND INFRARED IMAGING

Single-pixel detectors vs array of sensors (CCD/CMOS)

- Better efficiency
- Low cost outside the visible domain

 \rightarrow Ultraviolet and infrared imaging (e.g. gas leak detection^7) possible with high quality single sensors

Object with amount of gas trapped inside each cell (left) and its SPC recovered image⁷ (right)

⁷Gibson et al., Optics Express, 25, 2017

MULTI-DIMENSIONAL IMAGING

Single-pixel detector can be changed for

- \bullet A photon counting board \rightarrow temporal information
- A spectrometer \rightarrow spectral information

MULTI-DIMENSIONAL IMAGING

Single-pixel detector can be changed for

- A photon counting board \rightarrow temporal information
- A spectrometer \rightarrow spectral information

 \rightarrow Low-cost multispectral/hyperspectral and time-resolved systems (e.g. fluorescence lifetime sensing^8)

Stack of time images⁸ (left) and spectral images (right, Wikipedia)

⁸Rousset et al., Proceedings of SPIE, 10070, 2017

SINGLE-PIXEL IMAGING

Active topic in the last years

- Many patents: Rice University⁹, Xerox¹⁰, Google¹¹
- Increasing number of publications/research groups

⁹US Patent 8199244, Rice University, 2010

¹⁰US Patent 9188785 and 9253420, Xerox Corp., 2013

¹¹US Patent 9071739, Google Inc., 2014

SINGLE-PIXEL IMAGING

Active topic in the last years

- Many patents: Rice University⁹, Xerox¹⁰, Google¹¹
- Increasing number of publications/research groups

Possible improvements/future work

- Speed of acquisition (hardware and software)
- Video imaging
- High resolution imaging
- Machine learning

⁹US Patent 8199244, Rice University, 2010

¹⁰US Patent 9188785 and 9253420, Xerox Corp., 2013

¹¹US Patent 9071739, Google Inc., 2014

REMOTE IMAGING

Acquisition on a single pixel = hardware compression

- Small storage unit
- Low electricity consumption

REMOTE IMAGING

Acquisition on a single pixel = hardware compression

- Small storage unit
- Low electricity consumption

 \rightarrow Remote imaging (e.g. aerospace remote imaging^{12}) for which the data transmission rate is low

Original image (left) and SPC recovered image with 25% of measurements¹² (right)

¹²Ma et al., IEEE Geoscience and Remote Sensing Letters, 6, 2009